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Abstract
Adequate oxygen supply by exposure to mild hyperbaric oxygen at appropriately high atmospheric pressure (1266–1317 hPa) 
and increased oxygen concentration (35–40% oxygen) has a possibility of improving the oxidative metabolism in cells 
and tissues without barotrauma and excessive production of reactive oxygen species. Therefore, metabolic syndrome and 
lifestyle-related diseases, including type 2 diabetes and hypertension, in rats were inhibited and/or improved by exposure to 
mild hyperbaric oxygen. It accelerated the growth-induced increase in oxidative capacity of the skeletal muscle in rats and 
inhibited the age-related decrease in oxidative capacity of the skeletal muscle in mice. A decrease in dopaminergic neurons 
in the substantia nigra of mice with Parkinson’s disease was inhibited by exposure to mild hyperbaric oxygen. This review 
describes the beneficial effects of exposure to mild hyperbaric oxygen on some metabolic diseases and their perspectives.
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Introduction

Oxygen is essential for energy production in most cells and 
is carried by red blood cells that flow in blood vessels. The 
oxygen bound to hemoglobin in red blood cells is referred to 
as the ‘oxygen bound to hemoglobin.’ The oxygen dissolved 
in blood plasma is referred to as the ‘dissolved oxygen.’ 
Although the quantity of dissolved oxygen is less than that 
of oxygen bound to hemoglobin, it can flow to peripheral 
cells, especially those in the brain, heart, and eyes, even if 
capillaries are very narrow, since it is dissolved directly in 
blood plasma (Fig. 1a).

Enhanced atmospheric pressure and/or increased oxygen 
concentration can increase the oxygen content, especially the 
dissolved oxygen content in blood plasma [1, 2] (Fig. 1b). 
Exposure to mild hyperbaric oxygen at 1266–1317 hPa 
with 35–40% oxygen inhibited metabolic syndrome [3] and 
lifestyle-related diseases, including type 2 diabetes [4] and 
hypertension [5], in experimental animals since it improved 
oxidative metabolism, which was lower than that in controls 
[6].

However, side effects associated with enhanced atmos-
pheric pressure and/or increased oxygen concentration, 
including barotrauma and excessive production of reactive 
oxygen species in tissues and organs, are thought to occur. 
Hyperbaric oxygen therapy at 2026–3039 hPa with 100% 
oxygen for medical treatment is associated with the risk of 
inducing myopia and cataracts [7–9]. A previous study [7] 
reported that exposure to hyperbaric oxygen at 2534 hPa 
with 100% oxygen for 2–2.5 h, twice a week, up to 100 ses-
sions, induces cataracts in guinea pigs. Similarly, myopia 
and cataracts developed in human lenses after exposure to 
prolonged hyperbaric conditions of 2026–2534 hPa with 
100% oxygen for 90 min, once a day, from 150 to 850 ses-
sions [8]; however, it was rarely seen to occur after only 
48 sessions of hyperbaric oxygen conditions at 2534 hPa for 
90 min [9]. Hyperbaric oxygen therapy increases the num-
ber of invasive inflammatory cells in mice [10] and causes 
excessive production of reactive oxygen species in rats [11, 
12], rabbits [13], and humans [14]. Excessive production of 
reactive oxygen species plays a key role in the pathogenesis 
of many diseases and their complications; generation of free 
radicals and increased levels of oxidative stress are associ-
ated with atherosclerosis, cataracts, retinopathy, myocardial 
infarction, hypertension, diabetes, renal failure, and uremia 
[15–17]. In addition, regardless of pressure, oxygen treat-
ments involving > 40% oxygen have shown adverse effects, 
e.g., damage of erythrocytes due to reactive oxygen species 
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and reduced quantity of oxygen bound to hemoglobin in rats 
[18].

Exposure to mild hyperbaric oxygen at a low oxygen 
concentration (35–40% oxygen) does not result in enhanced 
levels of oxidative stress in rats [5, 19] and humans [20]. 
Based on previous findings from experimental animal and 
human clinical studies, the effects of exposure to mild hyper-
baric oxygen at 1266–1317 hPa with 35–40% oxygen are 
summarized in Table 1. It is noteworthy that these findings 
were obtained in the first step of exposure to mild hyper-
baric oxygen. Therefore, it is expected to define a suitable 
recommendation regarding a generally applicable protocol 
for exposure to mild hyperbaric oxygen in the subsequent 
step. This review describes the beneficial effects of exposure 
to mild hyperbaric oxygen on some metabolic diseases and 
related perspectives.

Metabolic syndrome

Metabolic syndrome, linked to chronic physical inac-
tivity and consumption of a high-fat and high-cal-
orie diet, is characterized by obesity, high blood 
pressure, and increased blood glucose, low density 

lipoprotein-cholesterol, and triglyceride levels [21, 22]. 
Experimental animals with metabolic syndrome have a 
nonsense mutation in the leptin receptor [23, 24]. Rats 
with metabolic syndrome have a low oxidative capacity 
in the skeletal muscle compared to normal rats [6, 25]. 
Reduced oxidative capacity in the skeletal muscle is sug-
gested to impair glucose metabolism and increase the risk 
of development of metabolic syndrome [6, 21, 22, 25]. 
Rats with metabolic syndrome exposed to mild hyperbaric 
oxygen had lower blood pressure, blood glucose, total cho-
lesterol, triglyceride, and insulin levels, but higher adi-
ponectin levels than those not exposed to mild hyperbaric 
oxygen [3]. In addition, rats with metabolic syndrome 
exposed to mild hyperbaric oxygen had high oxidative 
capacity and increased levels of peroxisome proliferator-
activated receptor γ coactivator-1α (Pgc-1α) mRNA, 
which plays an important role in oxidative metabolism by 
regulating mitochondrial biogenesis in the skeletal muscle 
[26, 27].

Exposure to mild hyperbaric oxygen is thus considered 
to inhibit the growth-related increase in blood glucose 
levels and decrease the muscle oxidative capacity of rats 
with metabolic syndrome owing to the improved oxidative 
metabolism [3].

red blood cell

dissolved oxygen

hemoglobin

oxygen bound to hemoglobin

blood vessel

a b

Fig. 1  Schematic diagram depicting the distribution of oxygen bound 
to hemoglobin and dissolved oxygen in blood vessels under normo-
baric (a) and mild hyperbaric oxygen (b) conditions. Abundant hemo-
globin is distributed in red blood cells, and up to four oxygen mol-
ecules can bind to one hemoglobin (oxygen bound to hemoglobin). 
The other kind of oxygen is dissolved in blood plasma (dissolved 
oxygen). The quantity of dissolved oxygen is less than that of oxygen 

bound to hemoglobin. Enhanced atmospheric pressure and/or oxygen 
concentration can increase oxygen in the body, especially dissolved 
oxygen in blood plasma. In addition, dissolved oxygen is able to flow 
to the peripheral cells, especially those in the brain, heart, and eyes, 
even if capillaries are very narrow, since it is dissolved directly in 
blood plasma



575The Journal of Physiological Sciences (2019) 69:573–580 

1 3

Type 2 diabetes

In general, blood glucose, hemoglobin A1c (HbA1c), and 
triglyceride levels are higher in patients with diabetes than 
in healthy lean people. Hyperglycemia worsens vascular 
disorders including a stroke, myocardial infarction, retin-
opathy, nephropathy, and peripheral neuropathy. Patients 
with type 2 diabetes have decreased oxidative capacity in the 
skeletal muscle, similar to those with metabolic syndrome 
[28]. Decreased oxidative capacity in the skeletal muscle 
of patients with diabetes is suggested to be related to insu-
lin resistance and impaired glucose metabolism. Both non-
obese and obese rats with diabetes, which were developed as 
Goto-Kakizaki [29, 30] and Otsuka Long-Evans Tokushima 
Fatty [31] models, respectively, have lower oxidative capac-
ity in the skeletal muscle than that of normal rats [32–34]. 
Zucker diabetic fatty rats show similar muscle properties as 
obese rats with diabetes [35]. Blood glucose, HbA1c, and 
triglyceride levels were higher in non-obese and obese rats 
with diabetes than in normal rats [33, 34], and those levels 
improved by exposure to mild hyperbaric oxygen [4, 36]. 
In the skeletal muscle, Pgc-1α, myogenin, and myogenic 
factor 5 mRNA levels and oxidative capacity were higher in 
rats with diabetes exposed to mild hyperbaric oxygen than 
in those not exposed to mild hyperbaric oxygen [37, 38].

The growth-related increase in blood glucose levels in 
rats with type 2 diabetes was inhibited by exposure to mild 

hyperbaric oxygen [4, 36–38]. The decreased blood glucose 
levels induced by exposure to mild hyperbaric oxygen in rats 
with type 2 diabetes were maintained even after these rats 
were subsequently returned to breeding under normobaric 
conditions [39]. The increased blood glucose levels of adult 
rats with type 2 diabetes not exposed to mild hyperbaric 
oxygen were lowered even if they were exposed to mild 
hyperbaric oxygen afterward [39]. These results indicate 
that low blood glucose levels in rats with type 2 diabetes 
can be maintained by exposure to mild hyperbaric oxygen 
compared to those not exposed to mild hyperbaric oxygen, 
both when blood glucose levels are increasing during growth 
[36–38] and after blood glucose levels are high in adulthood 
[39].

Exposure to mild hyperbaric oxygen, therefore, seems to 
prevent the decrease in oxidative capacity of the skeletal 
muscle of rats with type 2 diabetes, irrespective of their age 
[36–38]. In addition, exposure to mild hyperbaric oxygen is 
effective for the inhibition [4, 36–38] as well as improve-
ment [39] of hyperglycemia in rats with type 2 diabetes.

The morphological and histochemical properties of fib-
ers in the skeletal muscle correspond well with those of 
spinal motoneurons that innervate muscle fibers [40–43]. 
A previous study [44] had shown decreased oxidative 
capacity of spinal motoneurons in rats with type 2 diabe-
tes. In addition, this study [44] had examined the effects of 
exposure to mild hyperbaric oxygen on oxidative capacity 

Table 1  Effects of exposure to mild hyperbaric oxygen reported in previous studies

SHR spontaneously hypertensive rat, GK Goto-Kakizaki, OLETF Otsuka Long-Evans Tokushima Fatty, DA dark Agouti, UVB ultraviolet B, ICR 
Institute of Cancer Research, MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride, SpO2 peripheral oxygen saturation, HR heart 
rate

Species Effects References

Metabolic syndrome SHR/NDmcr-cp rat Inhibition of metabolic syndrome [3]
Type 2 diabetes GK rat Inhibition of type 2 diabetes [4, 36, 37]

OLETF rat Inhibition of type 2 diabetes [38]
GK rat Improvement of type 2 diabetes [39]

Diabetes-induced cataracts Repeated inbreeding of diabetic mouse Inhibition of cataracts [46]
Hypertension SHR Inhibition of hypertension [5]
Arthritis Collagen-induced DA rat Inhibition of arthritis [19]
Parkinson’s disease MTPT-injected C57BL/6JJmsSlc mouse Inhibition of decrease in dopaminergic neuron [86]
Pigmentation Male subject irradiated with UVB Melanin pigmentation turns light [62]

Female subject Senile spot size becomes small [62]
Proliferation Aged hairless (Hos, HR-1) mouse Improvement of proliferative activity of epidermal basal cell [60]
Metabolism Human Decrease in SpO2, increase in resting HR and energy 

expenditure
[20]

Skeletal muscle fiber Wistar rat Increase in oxidative capacity [63, 64]
Wistar rat Inhibition of atrophy [83]
Aged ICR mouse Improvement of oxidative capacity [69]

Spinal motoneuron Wistar rat Increase in oxidative capacity [63, 64]
GK rat Improvement of oxidative capacity [44]

Infertility Woman with intractable infertility Improvement of the outcome of in vitro fertilization [96]
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of spinal motoneurons. The inhibition of growth-related 
decrease in oxidative capacity of spinal motoneurons by 
exposure to mild hyperbaric oxygen corresponds well 
with that observed in muscle fibers innervated by spinal 
motoneurons, thereby implying that the properties and 
responses of spinal motoneurons and their innervating 
muscle fibers are closely related under diabetic, as well as 
normal conditions [44].

Diabetes‑induced cataracts

Cataracts are characterized by an accumulation of sorbitol, 
mediated by aldose reductase activity. The polyol path-
way is the major contributor to diabetes-induced cataracts, 
i.e., the denaturation of lens protein, since an increased 
flux of glucose via this pathway leads to diabetic lesions 
in the lens, and large quantities of glucose are reduced 
to sorbitol, which is not metabolized any further [45]. 
The increased availability of oxygen by exposure to mild 
hyperbaric oxygen inhibited the growth-related increase in 
blood glucose levels in rats with type 2 diabetes, thereby 
delaying cataract formation induced by the accumulation 
of sorbitol in the lens [46].

Hypertension

Spontaneously hypertensive rats (SHRs) were developed 
by repeated inbreeding of normal Wistar–Kyoto rats, which 
exhibited high blood pressure levels [47]. SHRs exposed to 
mild hyperbaric oxygen showed lower systolic and diastolic 
blood pressure levels than those of age-matched SHRs not 
exposed to mild hyperbaric oxygen [5]. Furthermore, SHRs 
exposed to mild hyperbaric oxygen had lower oxidative 
stress and higher antioxidant levels than age-matched SHRs 
not exposed to mild hyperbaric oxygen [5]. Abnormalities 
of central neural mechanisms regulating the peripheral sym-
pathetic outflow, i.e., an enhanced sympathetic activation 
and catecholamine metabolism following neurotransmit-
ter release from nerve endings, have been associated with 
hypertension [48, 49]. An enhanced sympathetic activation 
in rats with hypertension is mediated by the overproduction 
of highly reactive oxygen species, which induces sympatho-
excitation and thus hypertension [50, 51], whereas exposure 
to mild hyperbaric oxygen has been suggested to eliminate 
reactive oxygen species and maintain normal blood pressure 
levels [5]. An enhancement of oxidative metabolism in cells 
and tissues increases the carbon dioxide concentration in the 
surrounding region, which in turn, facilitates blood flow in 
blood vessels [52, 53].

Arthritis

Exposure to mild hyperbaric oxygen is effective in decreas-
ing levels of reactive oxygen species overproduced in arthri-
tis [19]. Oxidative stress and C-reactive protein levels are 
high in rats with arthritis [54], whereas the levels shifted to 
those in normal rats by exposure to mild hyperbaric oxygen 
[19]. Arthritic joints are characterized by hypoxia caused 
by an increased oxygen demand and decreased blood flow 
triggered by the increased intraarticular pressure [55–57]. 
Therefore, exposure to mild hyperbaric oxygen is effective 
in reducing reactive oxygen species levels overproduced dur-
ing arthritis [19].

Pigmentation and proliferation

The skin undergoes age-related degenerative changes, 
including tissue dehydration and transepidermal water loss 
[58]. Proliferation of epidermal basal cells decreases with 
age [59]. Exposure to mild hyperbaric oxygen has been 
reported to accelerate the proliferative activity of epider-
mal basal cells in aged mouse skin [60]. An adequate oxy-
gen supply from exposure to mild hyperbaric oxygen may 
accelerate the turnover rate of aged skin by enhancing the 
proliferative activity of epidermal basal cells. Therefore, the 
dissolved oxygen, which is increased by exposure to mild 
hyperbaric oxygen, is considered to diffuse from the dermis 
to the epidermis through blood microcirculation, thus accel-
erating proliferation of epidermal basal cells and inhibiting 
epidermal aging [60].

Suppression of ultraviolet B irradiation-induced pig-
mentation is due, at least in part, to the reduction in pros-
taglandin synthesis via the inhibition of cyclooxygenase by 
indomethacin, and to the induction of annexin or lipoco-
rtin by corticosteroids [61]. Exposure to mild hyperbaric 
oxygen was found to accelerate the fading of ultraviolet B 
irradiation-induced melanin pigmentation of the skin [62]. 
Furthermore, senile spot sizes on faces became smaller after 
exposure to mild hyperbaric oxygen [62]. Keratinocyte pro-
liferation and epidermal cell regeneration are considered to 
be activated by enhanced oxidative metabolism induced by 
exposure to mild hyperbaric oxygen, which may be effective 
for damage repair in the epidermis.

Adaptation of the neuromuscular system

Exposure to mild hyperbaric oxygen facilitates oxidative 
metabolism, particularly in pathways such as the mitochon-
drial tricarboxylic acid cycle, thus enhancing the oxidative 
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capacity of skeletal muscle fibers and the spinal motoneu-
rons innervating them [63, 64]. Growing rats exposed to 
mild hyperbaric oxygen exhibited greater voluntary running 
activities compared to those maintained under normobaric 
conditions (without exposure to mild hyperbaric oxygen); 
the oxidative capacity of muscle fibers and the innervating 
spinal motoneurons in rats increased after exposure to mild 
hyperbaric oxygen [64].

Reduction in skeletal muscle mass is one of the most 
striking features of the aging process [65]. Atrophy and 
reduced oxidative capacity of the skeletal muscle have 
been observed with age [66, 67]. Muscle atrophy in aged 
rats is associated with reduced activity levels of certain 
enzymes involved in oxidative metabolism [68]. An age-
related decrease in oxidative capacity of the skeletal muscle 
in mice was reported to be reversed by exposure to mild 
hyperbaric oxygen [69] as much as by exercise in aged rats 
[70]. Exposure to mild hyperbaric oxygen has an advan-
tage over exercise since it can increase the dissolved oxygen 
content owing to the enhanced atmospheric pressure and/
or increased oxygen concentration, which does not occur 
in exercise. Therefore, it is concluded that exposure to mild 
hyperbaric oxygen reduces the age-related decrease in oxida-
tive capacity of the skeletal muscle due to the improvement 
in oxidative metabolism [69].

Chronic inactivity, as in hind limb unloading and micro-
gravity exposure, induces atrophy and degenerative changes 
in the skeletal muscle and its fibers [71–75], as well as in 
spinal motoneurons that innervate the muscle fibers [76–82]. 
Muscle atrophy and decreased oxidative capacity were 
shown to be unaffected by either pre- or post-conditioning 
with exposure to mild hyperbaric oxygen [83]. In contrast, 
the degenerative changes were almost restored to normal 
levels after reloading, when pre- and post-conditionings 
with exposure to mild hyperbaric oxygen were combined 
[83]. Only a combination of pre- and post-conditionings is 
considered to activate the signaling cascades required for the 
recovery from atrophy and decreased oxidative capacity of 
the skeletal muscle.

Parkinson’s disease

Parkinson’s disease is a progressive neurodegenerative dis-
order in the elderly that is characterized by typical motor 
symptoms such as resting tremors, rigidity, bradykinesia, 
and gait disturbances [84]. Parkinson’s disease results from 
the progressive decrease in dopaminergic neurons in the sub-
stantia nigra [85]. Exposure to mild hyperbaric oxygen was 
shown to inhibit the decrease in dopaminergic neurons in the 
substantia nigra of a neurotoxic experimental animal with 
Parkinson’s disease [86]. The number of times the feet of the 
mouse slid off the stick in a balance beam test was fewer in 

mice with Parkinson’s disease exposed to mild hyperbaric 
oxygen than in those not exposed to mild hyperbaric oxygen 
[86]. PGC-1α, a transcriptional co-activator, may be one of 
the factors that contribute to the improvement in oxidative 
metabolism of dopaminergic neurons in Parkinson’s disease 
[87], since oxidative metabolism, mitochondrial biogene-
sis, oxidative stress, and gene expression are regulated by 
PGC-1α [88, 89].

It is concluded that exposure to mild hyperbaric oxygen 
activates oxidative metabolism in the dopaminergic neu-
rons in the substantia nigra and inhibits the reduction in 
dopaminergic neurons, thereby resulting in the inhibition of 
Parkinson’s disease [86].

Infertility

Hyperbaric oxygen therapy, an established medical treatment 
usually conducted under conditions of 2026–3039 hPa with 
100% oxygen, has been investigated for improving female 
[90–93] and male [94, 95] infertility. However, several side 
effects, including barotrauma and excessive production of 
reactive oxygen species, associated with hyperbaric oxygen 
therapy, have been reported [7–12, 14]. Low metabolism in 
the uterus and ovaries may be a factor responsible for infer-
tility since the former reduces the ability of fertilized eggs 
to remain in the uterus. Exposure to mild hyperbaric oxygen 
has been suggested to enhance oxygen supply to cells and 
tissues, thus improving oxidative metabolism, without baro-
trauma and excessive production of reactive oxygen species. 
In a recent study [96], 37 women with intractable infertil-
ity, who had previously received over 5 embryo transfers 
with a low clinical pregnancy rate (4.9%) and without birth, 
were exposed to mild hyperbaric oxygen before receiving 
any further embryo transfer. As a result, 13 women achieved 
clinical pregnancy with a rate of 13.8%; 5 women gave birth 
after in vitro fertilization treatment. Two women achieved 
natural conception and gave birth. However, 1 woman had 
an extra-uterine pregnancy, and 5 women had miscarriages.

Perspectives on exposure to mild hyperbaric 
oxygen

Exposure to mild hyperbaric oxygen is effective for elderly 
people, those with physical disability, as well as injured 
athletes, since no special movement needs to be performed 
under mild hyperbaric oxygen conditions. In future, expo-
sure to mild hyperbaric oxygen may be investigated for: (1) 
prevention and improvement of dementia, (2) improvement 
of functional imbalances of autonomic (sympathetic and 
parasympathetic) nerves, e.g., menopausal disorders and 
emotional instability, (3) maintenance and improvement of 
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immunity, health, and physical fitness, and (4) early recov-
ery from an injury. Further studies are required to solve 
these problems and define a useful protocol for exposure 
to mild hyperbaric oxygen.

Compliance with ethical standards 
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